
Cr,,

4. NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

/ S JAN 2 4 1594

THESIS
A STRUCTURED PROGRAMMING APPROACH

FOR
COMPLEX AUV MISSION CONTROL

by

Richard P. Blank

September, 1993

Thesis Advisor: Anthony J. Healey

Approved for public release; distribution is unlimited.

94-01968
"9 4 1 21 13 9 1 11i1ill!l1lIlIlll

REPORT DOCUMENWTATION PAGE[omApoe0MNo0001

Public reporting burden for this collection of information is estim&atd to average I hour Per VOaponse, including the time for reviewing isntruction,
searching existing data sources, gathering and maintaining the data eneded, and completing and reviewing the collection of information. Send comumnis
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302, and
to the Office of Management and Budget. Paperwork Reduction Project (070"199)S Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

123 September 1993 Master's Thesis

4. TITLE AND SUBTITLE A STRUCTURED PROGRAMMING 5. FUNDING NUMBERS

APPROACH FOR COMPLEX AUV MISSION CONTROL

6. AUTHOR(S) BLANK, Richard Peter
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey, CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
SPONSORINGI'MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 112b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. A

13.
ABSTRACT
Reconfigurability and reliability are two keys for the success of an AUV mission control software.

The Strategic layer of our software architecture is the level where co' trol of the mission is
accomplished. Here, code may change to meet the requirements of different missions and must
ti.erefore be easily reconfigurable.

Structured programming is one method of developing this lol,.cal control code for the Strategic
level. This thesis will show that this approach is a workable alternative to a strict rule based language
currently proposed, but may end up with a large number of code lines to consider if missions are
changed.

14. SUBJECT TERMS Structured Programming, Mission Control, Autonomous 15.
Vehicles, Robotics. NUMBER OF

PAGES 126

1.PRICE CODE

17. 18. 19. 20.
SECURITY CLASSIFI- SECURITY CLASSIFI- SECURITY CLASSIFI- LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescrbed by ANSI STh. 239-IS8

Approved for public release; distribution is unlimited.

A Structured Programming Approach

for
Complex AUV Mission Control

by

Richard P. Blank

Lieutenant, United States Navy

B.S., Worcester Polytechnic Institute

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1993

Author: __ _ __ _ _ __ _ _

Richard P. Blank

Approved by:
Apprved y: • -•nAnthin J. Hae ,esis Advisor

Matthew D. Kelleher, Chairman

Department of Mechanical Engineering

ii

ABSTRACT

Reconfigurability and reliability are two keys for the

success of an AUV mission control software. The Strategic

layer of our software architecture is the level where control

of the mission is accomplished. Here, code may change to meet

the requirements of different missions and must therefore be

easily reconfigurable.

Structured programming is one method of developing this

logical control code for the Strategic level. This thesis

will show that this approach is a workable alternative to a

strict rule based language currently proposed, but may end up

with a large number of code lines to consider if missions are

changed.

Accesion For

NTIS CRA&W
OIIC TAB 0
Uriannour'ced 0
J IJSI tlf IC ttO

By
DistF Ib~l;Otl I

Adjitbihty Codes
. AvdJl and I or

Dist -pca

iM |

TABLE OF CONTENTS

I. INTRODUCTION - THE NEED FOR AUTONOMOUS VEHICLES 1

A. BACKGROUND 1

B. THE NEED FOR A MISSION LEVEL CONTROL SYSTEM . 2

C. AN EXAMPLE OF A MINE SEARCH MISSION 3

D. SCOPE OF THE THESIS 5

II. BACKGROUND IN CONTROL SOFTWARE ARCHITECTURE . . 6

A. INTRODUCTION 6

B. EXPERT SYSTEMS 6

C. RULE BASED SYSTEMS 8

1. Search Pattern 8

2. AND/OR Search Trees 10

3. Breadth-First-Search 12

4. Depth-First-Search 12

5. Inference Engines 13

6. Chaining Methods 14

D. STRUCTURED PROGRAMMING 15

1. Processing Logic Trees (PLT) 16

2. PLT Rules 17

E. NEED FOR EASILY RECONFIGURABLE REAL TIME CONTROL

CODE 19

iv

F. DISCUSSION OF VARIOUS SOFTWARE ARCHITECTURES FOR

AUV CONTROL 20

1. Hierarchical Architecture 20

2. Layered Architecture 23

3. Hybrid Architectures 26

G. TRI-LEVEL CONTROL SOFTWARE 27

1. Strategic Level 30

2. Tactical Level 30

3. Execution Level 31

III. STRATEGIC LEVEL CODE IMPLEMENTATION 33

A. PROLOG IMPLEMENTATION 33

B. C CODE IMPLEMENTATION 38

IV. VALIDATION FOR THE 'FLORIDA MISSION' 44

A. INTRODUCTION 44

B. NORMAL OPERATIONAL SCENARIO 45

C. VEHICLE TYPE FAILURE AND EMERGENCY RECOVERY . . 48

V. CONCLUSIONS AND RECOMMENDATIONS 50

A. CONCLUSIONS 50

B. RECOMMENDATIONS 50

APPENDIX A 52

APPENDIX B 108

v

LIST OF REFERENCES 114

INITIAL DISTRIBUTION LIST 115

vi

LIST OF TABLES

TABLE I CHARACTERISTICS OF THE RBM 29

TABLE II PROLOG CODE FOR THE STRATEGIC LEVEL 34

TABLE III SAMPLE MISSION LOG OF THE TRANSIT PHASE . 47

TABLE IV SAMPLE OF A TERMINATED MISSION 49

vii

LIST OF FIGURES

Figure 2.1 Inference Engine 9

Figure 2.2 Representation of a Rule Set as an AND/OR Tree 11

Figure 2.3 Basic PLT Structure 16

Figure 3.1 A Prolog Statement 36

Figure 3.2 Mission Transition Diagram 40

viii

ACKNOWLEDG3UENTS

First of all I would like to give special thanks and my

sincere gratitude to Dr. Anthony Healey, Dr. Sehung Kwak and

David Marco for all of their patience and dedication. Without

their vast help I would not have understood the mission

control logic or even begun to master C. Dr. Healey provided

much insight into the development of an expert system and

provided me with the tools necessary to develop the overall

logic for a complex mission. He helped me to understand the

difficult concepts and made the learning process a trul,

worthwhile experience. I would also like to thank the Naval

Postgraduate School Direct Research Fund for their continued

support of the AUV project.

Lastly, and most importantly, 1 would like to thank my

wonderful wife Monica. Her tireless support and encouragement

helped make my entire graduate education and thesis research

so much more enjoyable.

ix

I. INTRODUCTION - THE NEED FOR AUTONOMOUS VEHICLES

A. BACKGROUND

Completely Autonomous Underwater Vehicles (AUVs) are

mobile self-contained instrumentation platforms with the

capacity to sense in dynamic and unknown environments, plan an

intelligent response, and act in accordance with that input

and the mission goal with no human supervision. In this

regard the AUV is a mobile robot that to P limited extent

emulates human behavior, i.e., the ability to sense, decide

and act independently. The class of Unmanned Underwater

Vehicles (UUVs) encompass AUVs and Remotely Operated Vehicles

(ROVs). ROVs are piloted by a human operator and allow for

continuous control by the host. The ROV is controlled

continuously using a cable link (tether) for power and

communication which makes it dependent on human interaction

through a manned surface asset. A spectrum of UUVs are now

being developed with less dependence on the human pilot

requiring high level commands only typically through acoustic

communication and correspondir'ly increased reliance on

onboard computer "intelligence".

Autonomous vehicles are ideally suited for operation in

dangerous or environmentally unsafe regions. These regions

include, but are not limited to deep water, under ice, heavily

1

polluted waters, and mine fields. AUVs will be able to

operate under relatively unrestricted conditions and have much

more freedom than the ROVs.

The overall control capability required for an AUV is

immense, spanning from dynamic positioning to vehicle cruise

control with obstacle avoidance and automatic fault recovery.

Inclusive to this control capability is the coordinated

operation of sensors, and the monitoring of the vessel's own

engineering systems. The control of the AUV is a continuous

process.

This thesis addresses the overall mission control of the

AUV. The goal was to build an expert system whereby an

"Officer of the Deck" (OOD), represented in computer control

code, controls the operation of the AUV. The "OOD" presented

here was built using a structured programming approach to

encompass a multitude of different situations for a specified

mission. It is contended that structured programming is a

viable method to control an AUV during a mission, even though

a large number of lines of code would be necessary.

B. THE NEED FOR A MISSION LEVEL CONTROL SYSTEM

A mission control package is responsible for the overall

planning and safety of a mission. Mission replan.;Tng can be

accomplished in real time to adjust to new equipment

capabilities. The control package attempts to take into

account all the possibilities that an AUV might encounter

2

while permitting the AUV to complete the mission in an

acceptable manner.

The primary long term goal and a true measure of success

in the AUV's real underwater world will be its reliability.

Another area of concern is for AUV mission control software to

be easily reconfigurable to a changing mission need by the

user. The main idea is to build a highly reliable and

reconfigurable expert control system that can be easily

modified by the non-expert and used effectively on an actual

AUV.

C. AN EXAMPLE OF A MINE SEARCH MISSION

A generic AUV mission may involve the initial planning, an

outbound transit, search in the designated area, completion of

the desired task, the return transit, and recovery of the

vehicle. The National Science Foundation sponsored a workshop

at the Florida Atlantic University, headed by Steer, Dunn, and

Smith (1992), to discuss the advancement of underwater vehicle

technology. The workshop participants realized the importance

of an inter-institutional competition and demonstrations in

order to share current research concepts and more quickly

advance the roles of AUVs. The outcome was a planned

exhibition with three sample AUV missions. Each mission

scenario posed a separate and viable opportunity to

demonstrate the role of an AUV.

3

The tasks were written in a way that even a partial

completion of the scenario would result in much experience

being gained from the experimental results. The three tasks

were made as realistic as possible for the eventual "real

world" application of these vehicles. The missions included

search and rescue, pollution source location, and navigation

with obstacle avoidance.

Each mission was designed to validate certain aspects of

the expected AUV capabilities. The mission specific

capabilities which were to be demonstrated were search,

surveying, water sampling, obstacle identification and

avoidance, and the use of a payload. Furthermore, the vehicle

had to maintain the control characteristics (i.e., vehicle

stability, and maneuvering capabilities) and navigate in a

dynamic environmen.. while monitoring all of the ;essel's

systems.

The search and rescue mission was specifically defined as:

Given the parameters of a search region, the AUV will traverse

to the region, locate a subsurface buoy, cut the buoy's

mooring line, drop a weight as close to the buoy as possible,

return to the launch site, and surface. For the purpose of

this thesis, the search and rescue mission was slightly

modified to make it more applicable to the Navy. Instead of

locating a buoy, the AUV would search for mines in the

minefield. Once all the mines were located, the mines would

be neutralized and the AUV would return to a predetermined

4

location. These scenarios have been collectively designated

as the "Florida Mission" and will form the basis upon which

the subsequent development of mission control code is based

and described.

D. SCOPE OF THE THESIS

The scope of this work is to examine control software

architecture, to examine the necessary rules in an Artificial

Intelligent expert system to conduct a typical search mission,

and to provide a translation of mission control logic into

executable C code that could be the basis of the higher level

of a real time control system for the NPS AUV II vehicle.

5

II. BACKGROUND IN CONTROL SOFTWARE ARCHITECTURE

A. INTRODUCTION

The goal of the mission control software is to build an

expert system that will drive a vehicle to successfully

accomplish a mission and which would be easily reconfigurable.

This would make it adaptable to changing mission requirements.

Various software architectures are available to be implemented

in an autonomous underwater vehicle (AUV), each with their

advantages and disadvantages. The three types of software

control architectures currently being used in the mission

control of AUV fall broadly into the classes of hierarchical,

behavioral, and hybrids of the two extremes. For the purpose

of the NPS II AUV, a hybrid tri-level control software is

being designed with plans of implementation as appropriate.

B. EXPERT SYSTEMS

An expert system attempts to emulate the behavior of human

expertise. In this respect, an expert system is different

than a typical computer program. An algorithmic program

operates based on set of commands or actions which result in

a specific response or reaction. The user initiates the tasks

that the system then performs. Expert systems behave much

more as consultants do. They may not know or need to know all

the intricate details, but they ask specific questions to

6

obtain and build required information (compiled knowledge)

from the user. The user on the other hand simply responds to

the questions. Basically, the expert system queries the user

as an ongoing dialogue in the generation of a rule set.

Answers following user entered queries may then be found by

searching the rule set so developed.

An expert system has the following characteristics as

defined by Marcus (1986):

"* Experts acquire their knowledge base over time and there
is virtually no limit to the amount of knowledge an expert
can obtain.

"* The knowledge base of an expert can change with time,
i.e., it is reconfigurable.

"* Experts can infer that certain things are true based on
what they know. The normal method of computer programming
was to calculate the unknown based on known formulas and
determinable variables.

"* Experts can utilize the knowledge in different ways which
becomes handy when conducting multiple operations. This
is important when the knowledge is being used for one
thing and also needs to be used in another area.

"* Experts apply heuristics or rules of thumb in order to
arrive at a conclusion rapidly. This is beneficial in
order to minimize the amount of general knowledge required
and thus reduce the required computer memory to
practically nothing. This keeps the system within certain
bounds.

In order for an expert system to be defined as such, it

must have the above mentioned characteristics. As the search

structure grows, the search mechanism expands into a plethora

of possibilities known as the phenomenon of combinatorial

explosion. This simply means that as the number of

alternative choices increases, new nodes are added

7

exponentially. This is not a realistic feasibility since

computers do not have infinite memory. The search space for

the NPS II AUV is not large enough to benefit from the use of

heuristics. Practically, then, the system is made to work

using a rule based system. The problems are solved using a

determined method as described below.

C. RULE BASED SYSTEMS

A rule based system uses an inferencing mechanism (engine)

to reference a given specified knowledge base or set of rules

(McGhee,Byrnes, 1993). The system then utilizes a search and

pattern matching technique, to reason and draw conclusions

from the knowledge base, working toward satisfaction of a

goal condition. A decision is then inferenced based on the

current situation. The knowledge base contains the rules,

facts, and the initial and goal conditions pertaining to the

situations that might be encountered in the mission and a

search of the rules is required.

1. Search Pattern

A search pattern is based on one or more logical

comparisons which, in an orderly fashion, review the facts

(knowledge) in t-..e data base. A proper decision in answer to

a query is thus based on the rules and the current facts.

This process is known as generate and test. That is, a

solution is generated and then tested to verify that it

satisfies the initial goal. In the AUV application, the facts

8

and vehicle conditions are constantly being updated throughout

the mission to keep the status or state of the vehicle

current.

Known facts are matched to the knowledge base, which

in turn leads to new facts. These are in turn applied by the

search control mechanism to the knowledge base through the use

-of operators. Problem solving in a rule based system is shown

by the diagram in Figure 2.1.

Inference
Engine

Operators

Known Knowledge

Facts Base

New Facts

Figure 2.1 Problem Solving in a Rule Based System

A graphical representation of the characteristic

structure of the search tree is often useful to provide a road

map or outline. This is commonly known as a state graph. In

9

general, a starting point is branched off to one or more goal

points. The goal, for example, may be to proceed to the next

waypoint. -Each node could represent the possible states of

the internal systems. The head node is known as the root node

and is the level 0 (primary objective). The successors of

level 0 are the levels 1,2,3, etc., and are the steps required

to meet the primary objective. Level 1 is known as the goal

node. The terminal nodes are known as the "leaves" of the

tree. All intermediate nodes are the subgoals of the tree and

are levels 2,3, etc., respectively numbered from the root

node.

2. AND/OR Search Trees

The general concept of a search tree was further

refined by Jackson (1990) to include an AND/OR search tree.

A representation of a rule set as an AND/OR tree is shown in

Figure 2.2. The branches from a node to its children may be

related in two ways. The first is the AND relationship. In

order for the goal or subgoal to be satisfied all the subgoals

must be achieved. The other possible method to satisfy the

requirements for the node is by using the logical OR

relationship. This method requires the completion of an

alternate route where one branch of many may satisfy the node.

Once the problem has been modeled as a state graph a search

approach to solve the problem is required. In a logical OR

relationship, it is important to prioritize multiple OR

10

arguments otherwise conflicts could arise. These priorities

must then be enforced as the graph is traversed.

A

Figure 2.2 AND/OR Search Tree

11

A blind search method is orderly and methodical and

will eventually solve the problem if a solution exists. It is

a viable approach especially with small to medium sized

problems. Furthermore, as computers continue to become faster

such forceful techniques are made more valuable due to their

relative simplicity. Two popular methods of blind search are

the Breadth-First-Search (BFS) and the Depth-First-Search

(DFS).

Heuristics can be used if the state space becomes too

large that the blind search method could consume an exorbitant

amount of computational processing time. Although the state

space associated with the current AUV mission control research

is not large enough to benefit from the use of heuristics.

3. Breadth-First-Search

The BFS method examines the nodes moving laterally on

the state graph. That is, all the nodes on the current level

are searched prior to proceeding to the next level. This

continues until the goal has been achieved or all the nodes

have been exhausted. The typical process proceeds from the

top (level 0) down to the lowest level and from left to right

on each level. The advantage of a BFS is that the root goal

will always be achieved in the shortest possible path.

4. Depth-First-Search

The typical DFS search begins at the root node and

proceeds down to the next level. However, at the next level

12

it does not proceed laterally, but proceeds along the branch

as opposed to the level of the tree. If the desired goal

condition is not met it proceeds to the next highest node

where an untraversed path is available. This method also

continues until the goal has been achieved or traversed as in

the BFS. A disadvantage with DFS is that the program may

spend much unnecessary effort in a deep subtree, far from a

suitable solution that may exist at an upper level. This is

also an advantage since these other solutions may not be the

desired solutions as is the case with the AUV mission control.

5. Inference Engines

A rule based or an expert system uses the inference

engine to implement the search. The inference engine examines

the rules in a specific, predetermined order. Once the rules

are matched to the current state or situation, the next stap

is taken, which results in the corresponding action being

executed. The function of the inference engine is to

determine whether a goal has been satisfied. The inference

engine checks the data base to see if the goal is considered

to be true. If the goal is not true, then an attempt is made

to satisfy the goal.

The conditional part of the rule is the IF part. When

the conditional part has been satisfied, the next step can be

executed. In some instances more than one rule satisfies the

condition. When this occurs the steps are executed according

13

to some ordered criteria. When the rule has been activated,

the actions specified by the rule are carried out. These

actions are defined by the rule consequent, or the THEN part

of the rule. Each executed action can produce new information

which can be used to help find the next rule to be executed.

This process of searching, matching and activating rules

continues until the goal is satisfied or no new information is

being produced.

6. Chaining Methods

Expert systems use this sequence of rules to provide

an ordered line of reasoning which the inference engine can

use to base its conclusion. It sjimply provides a sequence of

rules to be executed. The inference engine can utilize two

approaches to prove the goal: forward and backward chaining.

Forward chaining attempts to match one or more of the states

from the data base to the rule condition. Backward chaining

attempts to match the solution with the goal. In other words,

the THEN portion of the rule base is checked, i.e.,the data

base is examined for the goal. If the goal has been

satisfied, the process stops and the rule conditions are

asserted as knowledge. Otherwise, the inference engine

searches the rule base.

The forward chaining and backward chaining deductive

reasoning methods each have their advantages and

disadvantages. The choice of which to use is dependent on the

14

type of application. Forward chaining was utilized in the

implementation of the C language in this thesis. In the long

run, the user is generally not concerned which chaining

control is implemented, as long as the end result is correct.

D. STRUCTURED PROGRAMMING

A structured programming method is another means to use

when building an expert system. Combined with the rule based

methodologies, it is an alternative solution that can be used

in lieu of the strict rule based languages such as PROLOG.

Structured programming has been defined as any program whose

flow of execution control can be described by using only the

three basic control structures, i.e., sequence, selection, and

iteration (Jensen, 1981). Structured programming theory deals

with converting large and complex flowcharts into standard

forms. In this manner they can be represented by iterating

and nesting a much smaller and reasonable number of standard

control logic structures as the definition suggests.

The core of structured programming lies in the stepwise

refinement process. A flowchart is a helpful tool to describe

the flow of the execution of the program. The graph is

constructed of directed line segments whose direction of flow

is indicated by arrows. The line segments begin and end at

the nodes similar to the AND/OR Tree. Each node represents a

data transformation, decision point or a collection point for

the program control paths.

15

1. Processing Logic Trees (PLT)

Rather than simply flowing in one end of the node and

out another, the structured program is modified to allow flow

back to the previous node as well. In structured programming

this is known as processing a logic tree (PLT). This

structure provides a graphical representation of the various

parts of the project similar to a flowchart. The PLT permits

expansion in detail of the various levels while maintaining

the basic program representation. A structured design process

is achieved by prohibiting all but a hierarchical approach to

the problem solution.

Each node represents the execution of a specified

task. The task may be a simple mathematical calculation or a

complex function such as "Transit" in the AUV mission. The

level of complexity is a function of the abstraction level, or

tree level, where the task is defined. The simplest control

logic sequence structure of PLT is shown in Figure 2.3.

A

CBC
Figure 2.3 Basic Processing Logic Tree Structure

16

2. PLT Rules

The control logic structure of PLT represents the

sequence of operations, i.e., B, C,..., n. Node A

collectively represents the sequential tasks of operation {B,

C,..., n}. This leads to the fundamental PLT rule:

Rule 1: The processing performed by a node in a

processing logic tree is completely

defined by its subtrees (subplts).

A simple corollary to this rule states that the processing of

a node consists of processing all subtrees of that node.

An obvious follow on to this rule based on this point

is:

Rule 2: The Processing of nodes on each level

proceeds from left to right. The

processing of each node must be complete

prior to proceeding to the next node.

This process is fundamental in any ordered tree. Simply

stated, the processing of a parent node is not complete until

all of its offspring and all of the offspring's offspring,

etc., have been processed as well.

The PLT continues in this fashion until the lowest

levels have been processed. These lowest levels are identical

to the lowest levels on the Rule based method and are

similarly called the terminal nodes or "leaves" of the tree.

These end nodes contain the most rudimentary tasks and cannot

be expanded any further.

17

In order to keep this process reasonable, each node or

subroutine should be strictly limited in size. A manageable

size is considered to be a hundred lines or less, often not

greater than 30 lines of code. The subroutines should be

further limited to one processing function.

The Depth First Search (DFS) can be used in structured

programming and is identical to the DFS in rule based

programming. The selection criteria allows for the capability

to conditionally perform tasks based on a predetermined goal.

If the goal is satisfied, the task will be activated.

In this manner a command could be given or a simple

question could be asked and a response provided. The program

would behave much like the rule based PROLOG and any

structured programming language could be used such as PASCAL

or C.

The PLT provides a powerful means to represent proper

structured programs. A properly structured program is one

whose structure can be represented by a hierarchical, nested

structure of statements. The one stipulation is that every

program block at each nested level, there is only one input

and one output path. Strict adherence to this program

philosophy, however, can make the program quite complex and

also reduces the programs readability, especially for the end

user. Without any adherence to structure, though, the program

quickly becomes unmanageable and results in increased software

life-cycle costs. A well structured program on the other

18

hand, using conditionals, allows for the judicious use of

branching. This further results in a more desirable decrease

in the program complexity. In this manner, the PLT complies

with the accepted programming philosophy of having only one

input path, but having multiple exit paths, when necessary.

E. NEED FOR EASILY RECONFIGURABLE REAL TIME CONTROL CODE

Real time control code is necessary in order to maintain

control over the vehicle and its mission in a current stable

state. In order to accomplish this the AUV control must be

monitored and the data must be continuously updated. One

method of achieving this real time control is for the

subroutines to be written as simple as possible and be queried

often.

The mission profile is initially designed by the

programmer to meet the requirements of the end user. In

essence an expert system is built. However, a difficulty

could arise when these requirements or the mission changes.

The operation of an AUV would normally consist of numerous

algorithms of specified actions as it is still a question of

research as to how to best organize software modules. These

various algorithms are then combined with procedures and rules

to encompass the entire mission. The source code is then

tested in simulation and eventually installed in the vehicle

control computer. The various mission profiles that an AUV

can be used for can be quite diverse in their requirements,

19

goals, and mission specific tasks. Furthermore, the AUV

sensors and monitors can change which also result in

modifications to the vehicle control software as the mission

requirements change.

Therefore, there is an obvious need for great flexibility

in the specifications of the vehicle behavior. The goal is to

develop a software package that can be easily modified by the

end user to meet the changing sensor interfaces and behaviors

of the AUV controller.

F. DISCUSSION OF VARIOUS SOFTWARE ARCHITECTURES FOR AUV

CONTROL

The importance of the software architecture specification

for a control system design cannot be underestimated.

Software architecture may mean the method for dividing a

complex problem into smaller manageable pieces, the

decomposition of program and data according to a set of

predetermined criteria, or the breakdown of software

components into modules (Zheng, 1990). This thesis will use

it as a conceptual design for real time control software.

1. Hierarchical Architecture

Hierarchical control software depends on a structure

of hierarchy. In this architecture the control is broken down

into successively less complex tasks at the lower levels of a

search tree. The various levels are subsequently activated

and compiled to form the completed system. This architecture

20

assumes that the mission planning and actual execution

routines are abstracted to the higher levels. The lower

levels are responsible for the vehicle specific functions.

The overall model must contain, at a minimum, the current

state of the vehicle, the current state of the environment,

and the current state of the mission.

The hierarchy operates much in the manner of a

corporation. Each level receives sensory input directly from

the level below it and guidance from the level directly above

it. Data elements at the lowest elements or "leaves" consist

of the lowest possible structure. This data is then combined

with other data at each successively higher level to form

abstract data objects.

Another key characteristic of hierarchical

architecture is the update frequency of the data. As one

moves from the upper hierarchy down toward the "leaves" or

terminal nodes there is a faster update rate. At the lower

levels the tasks are more simplistic and the amount of data

involved is relatively minute. Furthermore, many of the tasks

in the terminal nodes involve hardware. The upper levels have

a much slower frequency since the quantity of data to be

analyzed is much greater and the problems are more complex.

The real time nature arises by the planning horizons

of each level. The slower the update frequency, the longer is

the lead time required to make corrections or adapt: the

21

faster the update frequency, the shorter the horizon can be.

The length of these horizons is determined by experimentation.

Hierarchical control software architecture utilizes

deductive reasoning as in the backward chaining method. The

AUV executes its mission by determining if the goal has been

satisfied. If the goal is not satisfied, the tasks are

divided into smaller, simpler tasks or subgoals. The subgoals

are then checked to see if they have been satisfied. If a

subgoal fails to be satisfied, an alternative path may be

tried. This process continues until all the subgoals of a

parent subgoal have been solved. Once these parent goals have

been solved, their parent's goals can be solved, etc., until

the initial goal has been satisfied. This continues until the

goal at level 0 has been satisfied.

Software that relies solely on a hierarchical

architecture will have certain disadvantages. These systems

are based on "known" assumptions rather than scientific proof.

This can result in a breakdown long into the software

development. If changes have to be made, one can be quickly

sent back to the "drawing board". Another disadvantage is

that even the simplest of tasks cannot be performed until the

upper hierarchy has been developed. As is the case when

numerous personnel are working on a project at different

points, incompatibilities can result. Mission logic built

this way is often spread throughout the control hierarchy

22

resulting in a rigid system which is difficult to explain to

the user.

2. Layered Architecture

A layered (or behavior-based) architecture (Brooks,

1986 and Bellingham, 1990) is viewed from a behavioral view

rather than a function breakdown view. The behavior of the

AUV is developed in steps or levels. The desired tasks are

first defined. Next, they are grouped according to their

level of competence. Every level represents a class of

behaviors that the AUV can exhibit. The lowest level

represents the most simplistic of behaviors. Each successive

level has an increasing level of competence and complexity.

The behavior becomes more specific as the top level is

approached.

It is important for the control system to be

responsive to the higher level goals while continuing to

respond to the lower level goals as well. In that regard,

each level is a subset of the next higher level. The end

objective is to incrementally build a more competent

"intelligent" vehicle.

Levels of competence correspond to layers of the

control system operating in parallel. A process where each

higher level is made to examine and alter the data from the

lower level as necessary is known as subsumption. Each upper

layer is said to subsume the lower level. Subsume means to

23

override by including; and to include means to work toward the

same goals. Together, the layers achieve the competence

required by the top level.

One major difference from the hierarchical

architecture is that commands and data are not passed from

level to level. The data is distributed among all levels, and

each level performs its own sensory processing. The AUV can

have the potential to exhibit an intelligent behavior by

wiring together multiple layers of control.

The majority of the low level functional requirements

of the AUV control can be satisfied using the layered

architecture. Multiple concurrent goals can be achieved by

having various layers working on different goals. The

complexity and time delay of passing data between layers is

avoided since the sensory systems are available at each level.

Another advantage is that the control system is robust. If

one layer fails to produce results, the lower levels still

continue to function. Subsumption is extended by adding a new

level of competence which is due to the incremental nature of

the layering scheme.

Layered architecture reasoning is normally forward in

mission control. Forward chaining is therefore the ideal

deductive reasoning method for this type of control. Forward

chaining is data driven, i.e., computation starts with the

existing facts and derives new facts or conclusions from them.

This type of system proceeds from conditions known to be true

24

towards states which the system allows the AUV to establish.

The process ends when either no additional facts can be

derived from current facts or a goal state is achieved. This

method is ideal for layered control entities which rely on the

sensory data to determine its behavior.

The primary disadvantage of the layered architecture

is that the integration strategy of subsumption can only be

validated by trial and error. It is also impossible to verify

that mission goals will be achieved. The AUV must behave

predictably and reliably in order to meet the users

requirements, especially due to the sensitivity and

potentially dangerous missions.

Subsumption must address the issue of conflicting

commands. If two (or more) commands from two (or more)

related behaviors are in direct conflict, the one with the

higher priority overrides the lower priority command.

Compromise is not a possibility in Subsumption. By permitting

preferences for a range of commands, some allowance is made

for the selection of commands that can simultaneously satisfy

multiple conflicting goals. This is known as cooperation.

Pure subsumption methodology does not explicitly

insure that the AUV remain stable. The very nature of an AUV

results in operation in an unfriendly or hostile environment.

Therefore, it is imperative that the vehicle remains stable.

Layered control architectures can get around the stability

problem by decoupling the low level control from the layered

25

behavioral architecture. This results in a pseudo-hybrid

system where there is a two level hierarchy with the lowest

level being stabilization control of vehicle motion.

3. Hybrid Architectures

The majority of software control architectures for

autonomous vehicles in operation today utilize one or the

other form of architecture. The two architectures are

basically different and therefore very little commonality can

be expected to be abstracted in combining the two. However,

it is believed that a hybrid architecture will emerge which

incorporates the main features of the two types.

The objective of many hybrid architectures is to have

explicit world representations at the higher levels of

abstraction and utilize layered (behavioral) schemes at the

lower levels of abstraction. All three types of architectures

are proceeding without any formal methodologies. Hybrids have

been developed (Zheng, 1990 and Kwak, 1991) which contain

reliable hierarchical systems and real time functionality

provided by layered systems. These systems are fairly, easily

understood by the non-experts which allows for easier mission

and robot reconfiguration, when necessary.

The architecture used in the context of this work will

be based on the Rational Behavioral Model (RBM) (Kwak, 1991).

The RBM is a three level control architecture, consisting of

26

a strategic (upper), tactical (middle), and execution (lower)

level. Both the strategic and tactical levels represent a

true hierarchical approach where commands are passed down and

data is passed up between the two levels. In essence there is

an isolation of the concise operational doctrine at the

strategic level. The lower levels and associated behavior of

the lower levels is unconstrained except that it must

represent the "inbuilt" capability of the vehicle which must

be motion control stable. The true benefit of this type of

system is that the global behavior exhibited by the AUV is

abstracted to the top, i.e., strategic level. This means that

the conflict resolution strategy can be modified by altering

this level alone.

The primary advantage of this type of architecture is

that the missions can be reconfigured easily. Furthermore,

the actual mission specifics are defined at the highest level

and how the AUV will respond to problems it encounters are

embodied in this rule based strategic level. This thesis

will attempt to show that structured programming at the upper

level can be used to help make the hybrid architecture a

reality.

G. TRI-LEVEL CONTROL SOFTWARE

A tri-level, multiple programming paradigm, software

architecture for the control of an AUV is known as a Rational

Behavior Model (RBM) (Byrnes, 1993). Multiple levels of

27

organization is nothing new to society. Businesses,

governments, and especially the military have used this type

of general decision making process for ages. It consists of

the upper levels making the majority of the strategic

decisions. As the process proceeds down to the lower levels

the functions become more specialized and specific. This

specifically influences the update rates of the various

levels. The higher levels in the hierarchy are characterized

by a slower update frequency, broader planning horizons, more

abstract sensory information and an increased capability to

solve complex problems.

The top level is entirely symbolic and contains no

global variables or virtually no memory. The bottom level is

synchronous and entirely numerical. The middle level provides

an asynchronous interface between the uppei and lower levels.

The division of command represents that typically found on a

manned vehicle, such as a submarine, and consists of the

Captain (strategist), his command staff (tacticians) and his

crew (executors). The Captain determines the mission by

sequencing the goals. The command staff (led by the Officer

of the Deck (OOD)) breaks down the tasks to produce commands

tc the crew to support the achievement of these goals. The

crew operate and receive data from the actuators and sensors

in response to the commands from the upper levels.

The predominant characteristics of the RBM are shown in

Table I (Byrnes, 1993).

28

TABLE I CHARACTERISTICS OF THE RBM

Strategic Level

- Symbolic computation only; contains mission doctrine/specification
- No storage of internal vehicle or external world state variables
- Rule based implementation, incorporating rule set, inference

engine, and working memory (if required) or a Structured
Programming Approach

- Non-interruptible, event driven
Directs the Tactical level through asynchronous message passing

- Messages may be either commands or queries requiring YES/NO
responses

- Operates in discrete (Boolean) domain independently of time
- Building block: the goal
- Abstraction mechanisms: goal decomposition (RBM-B) or rule

partitioning (RBM-F); both based on goal driven reasoning

Tactical Level

- Provides asynchronous interface between Strategic and Execution
levels

- Behaviors (tasks) reside here and may execute concurrently
- Behaviors are implemented as methods of objects
- Primitive goals activate one or more behaviors
- External interface of the model consists of two parts: the behavior

activations from the Strategic level and the command/telemetry
paths to/from the Execution level

- World and Mission models maintained here
- Responds to Strategic level with logical TRUE/FALSE
- Setpoint, modes, and non-routine data requests are output to the

Execution level
- Not interruptible except for data transfers; hard deadlines cannot

be guaranteed
- Operates in discrete event/continuous time domains
- Building block: objects with behaviors
- Abstraction mechanisms: class and composition hierarchies

Execution Level

- Numeric processing only
- Responsible for software to hardware interface, underlying vehicle

stability
- All synchronous (hard real time) processes reside at this level
- Sensor data processed to specification of Tactical level

Servo loops run continuously and concurrently,
synchronized by timed interrupts
Operates in continuous space/time domains
Building block: servo loops and signal processing algorithms

- Abstraction mechanisms: loop composition, sampling frequency, and
data smoothing

29

1. Strategic Level

The foundation for the Strategic level lies in the

top-down decomposition. The mission is broken down into the

goal directed reasoning. The goals are then passed directly

to the Tactical levels via messages.

The events are goal driven vice data driven as on the

Execution level. This level contains no state other than the

state of reasoning. The purpose of this is to support

determinism and expect predictable, rational responses from

the AUV. The Strategic level operates asynchronously in

boolean (TRUE/FALSE or YES/NO) space. It acquires the

necessary information from the Tactical level by polling

during mission execution. The only response it receives is a

simple yes or no.

2. Tactical Level

The Tactical level is the middle management level and

acts as an interface between the knowledge based Strategic

level and the actual vehicle control subsystems of the

Execution level. This level may call other routines at the

Tactical level or send commands to the Execution level. The

data collection and emergency path replanning also occur here.

The primary function, however, is to manage the interface

between the goals directed by the Strategic level and the

actions performed by the Execution level.

30

The operation of this level occurs in discrete event

space and continuous time. The decisions are made based on

queries or commands from the upper level which can be received

at any time. However, data is only passed up from the

Execution level at designated interrupt times. It can detect

an event at any time based on stored data received from the

lower level. The Tactical level provides information to the

Execution level in three types: discrete mode changes, non-

routine data requests, and continuous setpoints.

3. Execution Level

The Execution level is where the AUV actually utilizes

its sensors and is responsible for the software to hardware

interface. This underlies the stability of the AUV. The

Execution level controls the motors and control surfaces. In

so doing, the depth of the vehicle, heading, and speed are

controlled based on commands from the Tactical level. Sensory

information as from sonars is also sent back up to the

Tactical level to provide data for the upper levels to make

their decisions. This also represents the final opportunity

for the AUV to avoid danger. Certain situations require the

AUV to act without prompting from the upper levels. One type

of such inherent reflexive behavior is to "automatically"

steer around an obstacle without prior notification (Healey,

1992). Most of this code is based on physical model based

control theory and is strictly mathematical in nature. The

31

systems f or the NPS AUV II have been made as robust as

possible using sliding mode control theory where feasible.

An AUV must have, at a minimum, the following basic

control features:

"* Steering autopilot for heading control, or for yaw rate
control

"* Diving autopilot for stable depth changes or control over
pitch angle

"* Speed control autopilot to adjust the vehicle speed

"* A sonar obstacle detection system

"* It is desirable to also have a hovering autopilot for
maintaining position in a prescribed attitude.

32

III. STRATEGIC LEVEL CODE IMPLEMENTATION

The mission at the strategic level is formalized as a

logical statement to be proved, called a goal statement. The

execution of the program is an attempt to solve the problem or

goal statement given the assumptions in the logic of the

program.

In principle, the mission control logic is only concerned

with what is to be done, without bothering with how this

should be accomplished. The what is considered the logic

portion and the how is the control portion. This conforms

nicely with the Strategic level of the AUV where the Captain

is not concerned with the intricacies of operation, but

primarily wants to know what actions are being carried out.

It is at this level that error recovery procedures as well

as the conduct of the mission are specified. Error recovery

from both types of failure, with mission related tasks or

vehicle system related, must be specified.

A. PROLOG IMPLEMENTATION

Strategic level code for the Florida mission using the NPS

II AUV has already been developed and implemented in PROLOG

(BYRNES, 1993). The actual code is shown in Table II. In

this design the RBM was divided into two sections: a mission

specific part called the Mission Specification and a vehicle

33

. • - .- -- • \• -,' • • . • •' •,° _:• " " ... "."• • " .

TABLE 11 PROLOG CODE FOR TEE STRATEGIC LEVZL

1'.---M1ISSION SPECIFICATION FOR SEARCH AND RESCUE.--*

initialize vehicle ready for launich p(ANS1),ANS1:1-,setect first waypoint(ANS2).
initialize alert user(ANS),faiL.

mission in transit p(ANS1),ANSI~u:1,transit~t,transit doneP(ANS2),ANS?.z1.fail.
mission insac~(NINi~~erhl~erhcm~(N2,N2-~al
mission in task p(ANSI),ANSt::1,task,!,task done P(ANS2).ANS2z:1.faiL.
mission ln-returnjp(ANS1),ANSlz:1 ,returnI ,return done p(ANS2),ANS~aal,

wa t-for-recovery(ANS3).

transi t waypoint- control.
transit surface(ANS1).wait-for-recovery(ANS2).

search dIo search pattern(ANS),ANSxvt.
"serch su-rf aceCANS) ,wai t~forrecovery(ANS2).

task homing(ANS1),ANS¶:=1 drop package(ANS2),ANS~::1 ,get~gps~fixCANS3),AIIS3U:1.
get~next~waypoint(ANS4),ANS~z1l.

task surf acecANSi),wait for recovery(ANS2).

return waypoint control.
return surfaceCANSI),wait for recovery(ANS2).

/--- NPS AUV DOCTRINE.----

execute auv mission :-initiatize,repeat,mission.

waypoint control : not(critical~systemnprob),get~waypoint~status,ptan,
send setpoints and modesCAhS).

get waypoint status :-gps~check,reach~wsypoint~p(ANS1),ANS1:1l.get next waypointCANS2).
get-waypol nt-status.

gps check :-gps needed p(ANS1),ANS1:=1 ,get~gps~fix(ANSl).
gps check.

plan reduced -capacity system prob,global replan.
plan near uncharted obstacle, local replan.
plan.

near uncharted obstacie :-unknown obstacte-P(ANS1),ANSI=:1. log new obstacte(ANSZ).

local replan ioiter(ANS1),startliocal~replannerCAhS2).

global replan toiter(ANS1),start~global~replannerCANS2).

critical system prob power gone p(ANS),ANSa¶1.
critical system prob compxjter~systeminop~p(ANS),ANS3=1.
critical system prob propulsion system P(ANS),ANSS1l.
critical system prob steering system mnop p(ANS),ANS=1l.

reduced capaci ty-system-prob diving system ýp(ANS),ANSW:.
reduced Capaci ty-system~prob buoyancy system p)(ANS) .ANS-1.
reduced capaci ty~system-prob thruster system p(ANS).ANS:=1.
reduced capacity system prob leak test..p(ANS),ANSe=1.

34

independent part called the NPS AUV Doctrine. The first part

is particular to the mission, in this case the Florida

mission. The second part is particular to the operation of

the AUV. The latter portion should not change too often

unless additional sensors or equipment are added. The Mission

Specification portion will be tailored according to the

current mission. Many of the actions, such as transit and

return, will almost always be required. However, this is

where the majority of the end user interface will have to

occur.

The PROLOG rules represent an if-then relation. The rule

is divided into a head and a body. The head of the rule

corresponds to the then part and the body is the if part. In

general, the code can be considered a goal that is divided

into subscquent subgoals. If the subgoals are satisfied, then

the goal to the left of the ":-" is satisfied. A comma ","

represents an AND operator. A logical OR is represented by

writing multiple goals with the same head with a defined order

of priority. Thus, the goal can be satisfied by meeting all

the subgoal requirements in the first rule or the second, etc.

A sample rule statement is shown in Figure 3.1.

Mission success or failure in the Strategic level of the

RBM is defined by a predetermined sequential order of rules or

goals. When a subgoal rule head match is found, the search

proceeds to the first subgoal in that rule and then another

match is attempted. The inference engine, which is the

35

goal :- subgoal,, subgoal 2, ,ubgoal,.

goal = head
= if

subgoal,, subgoal. = body
= and

Figure 3.1 A PROLOG Statement

mechanism driving the search, marks each goal to provide a

reference should the current inference chain fail. If a match

cannot be found (i.e., all branches of a case statement are

false), the computation is simply undone to the last match,

and a different computation path is attempted, if available.

This is known as backtracking (Sterling, 1986). PROLOG uses

a technique called lazy evaluation which means it stops the

evaluation of a rule when an AND failure or an OR success

occurs. Therefore, the sequential order of the rules and

subgoals is critical if the desired effect is to be achieved.

Analysis of the PROLOG code reveals that there are no

storage of internal or external world state variables at this

level. Basically, there are no variables in the rule head.

This results in code that can be easily modified to meet the

requirements of a mission reconfiguration.

PROLOG uses a repeat function, which when combined with

backtracking, allows for the creation of loops. The first

time the loop is encountered, the repeat predicate succeeds

and the loop can be entered. Repeat is satisfied subsequent

times via the use of backtracking. This permits multiple

36

attempts to satisfy the subgoals lying to the right of the

repeat. A cut, "!", blocks the backtracking beyond that point

in the rule statement. This insures the strict, iterative

execution of the loop. The cut is a beneficial tool to

prevent unnecessary search paths and to essentially force the

desired sequence of subgoal testing.

The Strategic level program is initiated when a query is

made to the PROLOG inference engine. PROLOG then scans heads

of the rule set (program) from top to bottom. The first head

encountered is the "initialize" rule statement. Next, the

first subgoal of this rule statement,

"vehicle ready_for_launchp(ANS1)", is encountered. This

subgoal is a primitive goal in that it cannot be decomposed

any further. When a primitive goal is e:icountered, it either

sends a predicate query or a commaid to the Tactical level.

The query expects either a TRUE or FALSE response from the

Tactical level which in turn influences the ensuing reasoning

path of the inference engine. A command is a directive that

does not require a response, but rather initiates some action

at the Tactical level. The primitive goal "in-transit" is a

predicate query , since its argument, "ANSi", will either be

TRUE or FALSE. The response from the Tactical level is then

compared with "ANS1==1". If ANS1 is 1 (signifying TRUE) the

subgoal succeeds. The next subgoal is then selected. In this

case the command "transit" is sent to the Tactical level to

direct the AUV to transit.

37

If the ANS1 is 0 (signifying FALSE), the PROLOG inference

engine commences backtracking and attempts to re-satisfy the

subgoal "in-transit". However, this attempt will also fail

since there is no other way to satisfy "intransit".

Consequently, the first "mission" fails and the subsequent

rule is implemented. Subsequently, the next rule statement is

implemented. The process continues in an attempt to satisfy

the original query.

The four primary phases of the Florida mission are

"transit", "search", "task", and "return". Each phase has two

rule statements that can satisfy the goal. The first rule

statement of each phase can be satisfied by the sequence of

steps that would be followed in a normal operation. The

alternative statement is a means of having an emergency action

if the software or equipment fail. In the case of this

mission, the vehicle would be commanded to "surface" and

"wait forrecovery" However, this is only if the primary rule

statement should fail. It is essential that the desired chain

of events occur in the order required.

B. C CODE IMPLEMENTATION

The C code implementation was written using structured

programming. In a structured programming language such as C,

all of the functions can be broken down into subroutines. The

greater the functions are decomposed, the simpler they are to

modify. This thesis used the expert system developed for the

38

PROLOG code as a model for the structured programming

approach.

The logic for the implementation is based on if-then

relations as is the PROLOG code. Each goal (subroutine) is

divided into other subroutines, and these into subsequent

subroutines, etc. When the subroutine is at the primitive

level it cannot be decomposed any further. Thus, a predicate

query is made or a command is sent to the Tactical level. If

there is an output from a subroutine it is a simple TRUE or

FALSE which corresponds to what is happening and is not

concerned with how it happens. This is the beauty of logical

programming.

The Strategic level program is initiated when the main

program, "ExeAuvMi" (Execute AUV Mission), calls the

subroutine "Mission" and simply asks if the mission i

complete or not. A generic mission control transition diagram

is shown in Figure 3.2. The main program includes a large

while loop which is equivalent to the backtracking and repeat

combination in PROLOG. "MissionComplete" is initialized as

FALSE so that the loop will be entered at least once. The

execution of the mission continues until the mission is

complete either in its preferred way or in some default fail

safe way. If a fault occurs during one of the four phases,

the AUV attempts to satisfy the mission in an appropriate

default manner. Default fail safe operation for the AUV has

39

While Loop
Execute Mission

Mission

Phase

WayPoint Control

ritical Sys Check

OK Not K Surface & WaitReco

bstacle Check Obstacle

No Obstag-le,- Local Replan

NonCritSys Check Not OK

OK Global Replan

GPS Check Time

Take GPS
Not Time

Reached WayPoint Yes
Get Next WayPoint0

Send SetPts&Mode

Figure 3.2 Mission Transition Diagram

40

been defined as a "surface" subroutine and is commanded to

"wait for recovery". These alternatives are equivalent to the

two OR rule statements for each phase in the PROLOG code.

In general, there are choices of three levels of system

problems:

1. No problem
2. Reduced capacity problem
3. Critical system problem

which are the means to force either:

1. No action
2. Replan of mission phases
3. Mission abortion

The decisions are made by objects at the tactical level

using system diagnostic techniques with a failure modes and

effects analysis (FMEA).

The decision of which of the three levels of system

problems to proceed with at the Strategic level is determined

by a predetermined sequential order of subroutines. If a

FALSE response is received upon calling a subroutine, the next

step is attempted. This continues until the steps have been

exhausted and the program returns to the while loop. The

while loop continues until the mission is complete or it is

aborted due to a failure as discussed above.

The "Mission" subroutine, for example, queries the

Tactical level with the subroutine "InTransit". If the

response, "AUVInTransit", is TRUE the Tactical level is

commanded to conduct "Transit". Since no response is expected

or required from "Transit" the program continues. The next

41

query is "IsTransitDone". At least the first time through

"TransitComplete" will be FALSE, so the program continues.

The different phases, "AUVIn...", are all initialized as TRUE

so that the program enters them at least once. The

"...Complete" are initialized as FALSE so that the program

does not automatically complete the mission the first time

through. The next series of queries should all result in a

FALSE as well, when the respective subroutines are called. As

a result, the while loop continues and starts again with the

query is the "AUVInTransit".

The while loop is the primary difference between the rule

based programming and structured programming. Whereas PROLOG

simply backtracks until it reaches a cut, structured

programming must complete the entire loop before it comes back

to the same query. This is not as big a problem as it may

sound since the only expected response is TRUE or FALSE (1 or

0) and therefore the cycle through the series of queries is

virtually instantaneous. Although the repeat in a PROLOG code

only goes back to the cut, it does not take much more real

computational time to repeat the same question in Structured

programming.

There is no storage of internal or external world

variables at this level as in the PROLOG code. The lack of

memory at the Strategic level is a key characteristic when the

mission changes. This allows for easier modification to meet

the requirements of a new mission which is one of the long

42

term goals for mission control software. The Tactical and

Execution levels should not have to be changed in the RBM if

the mission changes. These levels may have to change if the

sensors change or the dynamics of the vehicle is altered, but

this would require a change in the hardware of the AUV as

well.

Many of the individual subroutines are called by multiple

subroutines. Since all the subroutines are linked together,

they can be called by any of the others, as long as they have

the proper variable in the argument. Thus, it is imperative

that commonality be used wherever possible. The AUV systems

are checked at each of the individual phases. Therefore, the

critical and non-critical system subroutines are called by all

the phases. For example, the "NonCriticalSysCheck" subroutine

checks if there are any new non-critical system problems.

This subroutine is called by the subroutines "WayPCont",

"SrchPatt", and "TaskPatt" and the argument

"NewNonCriticalSysProb" is the same for all three. This

reduces the lines of code drastically. A complete listing of

all C subroutines is provided in Appendix A.

43

IV. VALIDATION FOR THE 'FLORIDA MISSION'

A. INTRODUCTION

The modified "Florida Mission" is a takeoff of the search

and rescue mission originally planned for demonstrations off

the Florida coast. The mission consists of a transit from the

launching site, a search for mines, followed by the

neutralization of the mines, and a return transit to a

predetermined site. In order to validate the logic of the

structured programming two scenarios were conducted, one to

test the normal operation and the other to demonstrate the

emergency procedure when a major fault is discovered.

The critical systems on the AUV are the power, propulsion,

steering, and computer equipment. If any of these systeiis

fail during operation, the AUV is sent into a Surface

subroutine followed by a WaitForRecovery subroutine. The

latter two subroutines also define the normal completion of

the mission once the AUV has reached its end destination.

The non-critical systems of the AUV are buoyancy, diving,

payload, sonar, thruster, and hull integrity (water leaks).

If a new non-critical system failure occurs the AUV is sent

into a GlobalReplan subroutine where the AUV loiters and

conducts a global mission replan. This simply means that when

one of these systems malfunctions certain phases of the

44

mission may be shortened or left out completely. It is

important to note trh±t the AUV takes action only if a new non-

critical system failure occurs. Therefore, the AUV is not

sent into a global replan every loop since action has been (or

is being) taken on the failure already.

The data is sent to a mission log which records the

desired information in order to maintain a running account of

the mission status. Normally this would be recorded in a

database, but for the purpose of the experiment in this thesis

it was recorded in a data file. This method was used in order

to demonstrate the proper execution of the mission itself.

When the code is implemented on the actual AUV the queries

would be made directly to the Tactical level and its database.

For the purpose of testing the logic, the queries were made to

the user, vice the Tactical level. The set points and modes

are sent to the buffer each iterative loop to ensure that the

execution level maintains a wcrld state of the vehicle and its

position for the autopilot.

B. NORMAL OPERATIONAL SCENARIO

The normal operational scenario consisted of the AUV

completing all the phases of the mission without any internal

critical equipment failure. A complete sample normal mission

lor can be found in Appendix B. Many of the steps in each

phase were only shown once or twice since only the logic was

being tested. In real time, the while loop may be entered

45

thousands of times before each phase is completed, but

repeating the loop a couple times demonstrates that the

subroutine logic will function properly. The C code for the

first phase (Transit) of a sample mission is shown in Table

III. The transit phase includes a new non-critical sonar

system failure which requires a global replanning.

46

TABLE III SAMPLE MISSION LOG OF THE TRANSIT PRUSE

status of the system fotlows: s .OC,i s OK.
AUV is in transit stage.

Power Status 0
Propusion Sstem
Steering System
Computer System
There are no obstacles in the path.

Voyancy System :
iving system
ayloid Status

Sonar System
Truster System
Water Leak Status
It is not time for a GPS fix.
AUV has not reached a waypoint yet.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the transit stage.

AUV is in transit stage.

Power Status 0
Propulsion System
Steering System
Computer System
There is an obstacle in the pqth.
There is an unknown obstacte in the path.
The new obstacle has been Logged.
The AUV has commenced Loitering to permit time to complete
the necessary steps.

The AUV has started the Local replanning.

"Voyancy System
lving System
ayLoad Status

Sonar System 1
Thruster system :
Water Leak Status

There is a new non-criticat system problem.

Týe AUV has commenced loitering to permit time to complete
the necessary steps.
The AUV has started the global replanning.

It is not time for a GPS fix.
AUV has reached the next waypoint.
The AUV has been programa~d for the next waypoint and is
proceeding in thaJ direction.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the transit stage.

AUV is in transit stage.

Power Status
Propulsion System 0
Steering System : 8
Computer System 0

There are no obstacles in the path.

Voyancy System :
Diving System
Payload tatus
Sonar System
Thruster System 0
Water Leak Status

It is time for a GPS fix.
A GPS fix has been taken.

AUV has reached the next waypoint.
The AUV has.been progranned for the next waypoint and is
proceeding in that direction.

The AUV is sending the set points and modes to the buffer.
A11V ha ,rpmn|tpd th. tr n-it ct-a+.

47

C. VZEICLE TYPE FAILURE AND DUXRGENCY RZCOVERY

The critical system failure scenario was conducted to

ensure that the AUV would take the necessary steps to ensure

that the vehicle itself would not be lost if a major component

malfunctioned. The scenario consisted of the vehicle

originally operating with no equipment failures. Next a

diving system failure occurred and a global replan ensued.

The next time through the loop a steering system failure

occurred which sent the AUV into the Surface and

WaitForRecovery subroutines or essentially termination of the

mission. The log of the sample failed mission is shown in

Table IV.

48

TABLE IV SAMPLE OF A TERMINATED MISSION

Status of the systems follows: 0 is OOC,
1 is OK.

AUV is in transit stage.

Power Status 0
Propulsion System 0
Steering Sys tem 0
Computer System 0

There are no obstacles in the path.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not time for a GPS fix.
AUV has not reached a waypoint yet.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the transit stage.

AUV is in transit stage.

Power Status : 0
Propulsion System :0
Steering System :0
Computer System : 0

There is an obstacle in the path.
There is an unknown obstacle in the path.
The new obstacle has been logged.
The AUV has commenced Loitering to permit time to complete
the necessary steps.

The AUV has started the local replanning.

Buoyancy System 0Diving System n

Payload Status i'
Sonar System
Thruster System 0
Water Leak Status 0

There is a new non-critical system problem.

The AUV has commenced loitering to permit time to complete
the necessary steps.

The AUV has started the global replanning.

It is not time for a GPS fix.
AUV has reached the next waypoint.
The AUV has been programmed for the next waypoint and is
proceeding in that directior

The AUV is sending the set p i.nts and modes to the buffer.

AUV has completed the transit stage.

AUV is in the search stage.

The search time has elapsed, the search stage is over.

AUV is in the task stage.

Power Status 0Proputsion System 0
Steering System 1
Computer System 0

There is a critical system problem.
Cannot complete programmed mission.

AUV is surfacing.

AUV is waiting for recovery.

49

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

It is the contention of this thesis that the structured

programming approach for a complex AUV mission is workable for

mission control logic development. This contention has been

shown to be true. However, PROLOG rule based code has one

primary advantage. A single page of PROLOG code translates

into one main program and 52 subroutines in C. Clearly,

PROLOG represents a simpler version. Since the long term goal

for the Strategic level was to make the code reconfigurable

and relatively easy for the user to modify, the rule based

programming should be the method of choice.

The single advantage of using C in the Strategic level is

that no extra compiler or hardware support would be necessary

to install in the AUV. The software is already required since

the Execution level also uses C. Extra memory and a PROLOG

processor would not be required. The only extra memory

required in the structured programming is that some of the

variables are initialized to ensure that the subroutines are

entered at least once.

B. RECOBMENDATIONS

Structured programming can indeed be used for programming

at the Strategic level. However, it lacks the overall

50

simplicity desired by the user to reprogram. Therefore, the

structured programming approach should only be used as an

effective backup should the rule based code or related

software be unavailable for a real time embedded computer.

51

APPENDIX A

This appendix contains the entire structured programming

code written in C including the main program (ExeAUVMi.C) and

all the subroutines. They occur in alphabetical order.

52

Buoyancy.c

/* Subroutine to conduct diagnostics of the buoyancy system
and determine if there is a new system problem. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

BuoyancySysDiagnostics(NewBuoyancyProbPtr)

int *NewBuoyancyProbPtr;

/* Main portion of subroutine */(
printf ("Enter 1 if there is a new buoyancy problem, 0 if not.");
scanf ("Id", &*NewBuoyancyProbPtr);
fprintf(outfMission,"Buoyancy System %d\n",*NewBuoyancyProbPtr);

5

53

Computer. c

/* Subroutine to conduct diagnostics of the computer system
and verify that there are no computer system problems. */

#include -stdio.h>

extern FILE *outfMission;

ComputerSysDiagnostics(ComputerSysProblemPtr)

int *CwmputerSysProblemPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a computer problem, 0 if not.");
scanf("id",&*ComputerSysProblemPtr);
fprintf (outfMission, "Computer System : %d\n", *ComputerSysProblemPtr);

}

54

CritSysC. c

1* Subroutine to conduct check of critical systems *

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfl~ission;

CriticalSysCheck (NoCriticalSysProblemPtr)

mnt *NoCriticalSysProblemPtr;

/* Main portion of subroutine *

int PropulSysProblem, SteeringSysProblem, ConiputerSysProblem;
int PowerProblem;

/* Initialize Status of Systems ~
PowerProblem = FALSE;
PropulSysProblem = FALSE;
SteeringSysProblem = FALSE;
ComputerSysProblem = FALSE;

/* Call subroutines to conduct system diagnostics and verify
system is OK */

PowerCheck (&PowerProblem);
PropulSysDiagnost ice (&PropulSysProblem);
SteeringSysDiagnost ice (&SteeringSysProblem);
ComputerSysDiagnost ice (&ComputerSysProblem);
fprint~f(outfMission, tt\nt");

/* Determine if there is any critical system failure *
if (PowerProblem 1 1 PropulSysProblem 11 SteeringSysProblem

ComputerSysProblem)

*NoCriticalSysProblemPtr = FALSE;
fprintf(outfMission.,"There is a critical system problem.\n");
printf("There is a critical system problem.\n");

55

DivingSys.c

/* Subroutine to conduct diagnostics of the diving system
and determine if there is a new system problem. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

DivingSysDiagnostics(NewDivingProbPtr)

int *NewDivingProbPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a new diving problem, 0 if not.");
scanf("%d",&*NewDivingProbPtr);
fprintf(outfMission,"Diving System :d\n" ,*NewDivingProbPtr);

}

56

DropPackage. c

,/* Subroutine to drop the package for the main task of the mission

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

DropPackage (PackageDropDonePtr)

int *PackageDropDonePtr;

/* Main portion of subroutine *

printf('tEnter 1. if the package has been dropped, 0 if not."),
scanf ("%d" ,&*PackageDropDonePtr);
if (*PackageDropDonePtr)

fprintf(outfMission,."AUV has dropped the package.\n\n");

else

fprintf(outfMission,"AUV has not dropped the package.\n\n1'l;

57

ExeAUTVMi .c

/* Main program for execution of Flor~da mission -

#include <stdio.h>

#define TRUE I
#define FALSE 0

FILE *outfMission;

mainoC

mnt MissionComplete;

/* Initialization */
MissionComplete = FALSE;

/* open file to write the mission information ~
outfl~ission. = fopen("Mission.log".."w');

fprintf(outfMission,"Status of the systems follows: 0 is OOC,\n,);
fprintf (outfMission," 1 is OK.\n\n");

/* Conduct while loop until mission is complete *
while (!MissionCornplete)

{ iso(Msio~mlt)
i Mission (&missonomlee)

f
fprintf (outfMission, "Mission completed successfully. \n'1;
printf ("Mission completed successfully. \n");

else

fprintf (outfMission, 'Mission not completed!\n");
printf("'Mission not completed! !\n");

58

FoundObs.c

/* Subroutine to check if there is an obstacle in the path. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *OutfMission;

FoundObstacle(FoundObstacleAnsPtr)

int *FoundObstacleAnsPtr;

/* Main portion of subroutine */i
printf("Enter 1 if AUV has found an obstacle, 0 if not.");
scanf ("%d", &*FoundObstacleAnsPtr);
if (*FoundObstacleAnsPtr){

fprintf(outfMission,"There is an obstacle in the path.\n\n");)
else{

fprintf(outfMission,"There are no obstacles in the path.\n\n");
}}

59

GetNxtWp.c

/* Subroutine to get the next vaypoint *

#include <stdio.h>

extern FILE *outfMission;

GetNextWayPointo(

/* Main portion of subroutine *

fprintf(outfMission,'The AtJV has been programmed for the next";
fprintf (outfMission, "vaypoint and is\n");
fprintf (outfMission, "proceeding in that direction.\n\n");
printf("The A1JV has been programmed for the next waypoint");
printf(" and is \n");
printf("proceeding in that direction.\n");

60

GlobRepl. c

/* Subroutine to conduct global replan */

#include <stdio.h>

extern FILE *outfMission;

GlobalReplan()

/* Main portion of subroutine */{
/* Call subroutine to commence loiter to allow for global replan */
Loiter(;

/* Call subroutine to commence global replan */
StartGlobalReplanner();

}

61

GPSCheck.c

/* Subroutine to check if a GPS fix is necessary and
take a GPS fix as required. *1

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

GPScheck()

/* Main portion of subroutine */

int GPSFixTime;

/* Initialization *1
GPSFixTime = FALSE;

/* Subroutine to check if time for GPS fix */
CheckIfTimeForGPS(&GPSFixTime);

if (GPSFixTime)

TakeGPSFixO;

62

HomeDone.c

/* Subroutine to determine if AUV homing phase is completed */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsHomingDone(HomingCompletePtr)

int *HomingCompletePtr;

/* Main portion of subroutine */

printf("Enter 1 if the homing is done, 0 if not.");
scanf ("%d", &*HomingCompletePtr);
if (*HomingCompletePtr)

fprintf(outfMission,"AUV has completed the homing phase.\n\n");}
else

fprintf(outfMission,"AUV is still in the homing phase.\n\n");

63

Homing.c

/* Subroutine to home in on the target */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Homing()

/* Main portion of subroutine */{
int WayPointControlComplete;
int HaltMission; /* Dummy variable */

/* Initialization */

WayPointControlComplete = FALSE;

WayPointControl(&WayPointControlComplete);

if (WayPointControlComplete == FALSE)
/* Unable to complete waypoint control.

Call subroutine to surface and wait for recovery. */
{

fprintf (outfMission, "Cannot complete programmed mission. \n");
printf ("Cannot complete programmed mission. \n") ;

Surface (;
WaitForRecovery();

/* "HaltMission" puts a break in the simulation to imply that
the mission has been terminated */

scanf ("%d",HaltMission);

64

InReturn. c

/* Subroutine to determine if AUV is in the "Return" stage */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

InReturn (AUVInReturnPtr)

int *AUVInReturnPtr;

/* Main portion of subroutine */{
printf("Enter 1 if the AUV is in the return stage, 0 if not.");
scanf ("%d", &*AUVInReturnPtr);
if (*AUVInReturnPtr){

fprintf(outfMission,"AUV is in the return stage.\n\n");
6

65

InSearch.c

/* Subroutine to determine if AUV is in search stage *

#include cstdio .h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

InSearch (AUVlnSearchPtr)

mnt *AUVInSearchPtr;

1* Main portion of subroutine *

printf(ffEnter 1 if the AUV is in the search mode, 0 if not.");
scanf ("Wd" ,&*AUVlnSearchPtr);
if (*AUVlnSearchPtr)

fprintf(outfMission,"AUV is in the search stage.\n\n");

66

InTask.c

/* Subroutine to determine if AUV is in the "Task" stage */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

InTask(AUVInTaskPtr)

int *AUVInTaskPtr;

/* Main portion of subroutine */{
printf("Enter 1 if the AUV is in the task stage, 0 if not.");
scanf ("%d", &*AUVInTaskPtr);
if (*AUJVInTaskPtr){

fprintf(outfMission,"AUV is in the task stage.\n\n");
6

67

InTranst. c

/* Subroutine to determine if AUV is in transit stage or not */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

InTransit (AUVInTransitPtr)

int *AUVInTransitPtr;

/* Main portion of subroutine */

printf("Enter 1 if the AUV is in transit, 0 if not.");
scanf ("%d", &*AUVInTransitPtr);
if (*AUVInTransitPtr)

fprintf(outfMission,"AUV is in transit stage.\n\n");
}

68

IsItTrgt.c

/* Subroutine to determine if AUV has found a target */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsItTarget(TargetPtr)

int *TargetPtr;

/* Main portion of subroutine */{
printf("Enter 1 if the AUV has found a target, 0 if not.");
scanf ("%d",&*TargetPtr);
if (*TargetPtr)

fprintf(outfMission,"AUV has found a target.\n\n");}
else

fprintf(outfMission,"The obstacle is not a target.\n\n");

69

LocalRep.c

/* Subroutine to conduct local replan */

#include <stdio.h>

extern FILE *outfMission;

LocalReplan()

/* Main portion of subroutine *1{
/* Call subroutine to commence loiter to allow for global replan */
Loiter();

/* Call subroutine to start the local replanner */
StartLocalReplanner();

7

70

LogObst.c

/* Subroutine to log the unknown obstacle. */

#include <stdio.h>

extern FILE *outfMission;

LogNewObstacle()

/* Main portion of subroutine */
(

fprintf(outfMission,"The new obstacle has been logged.\n\n");
printf("The new obstacle has been logged.\n");}

71

LogTrgt.c

/* Subroutine to log the target */

#include <stdio.h>

extern FILE *outfMission;

LogTarget()

/* Main portion of subroutine */
t

fprintf(outfMission,"The target has been logged.\n\n");
printf("The target has been logged.\n");

72

Loiter. c

/* Subroutine to commence loiter */

#include <stdio.h>

extern FILE *outfMission;

Loiter ()

/* Main portion of subroutine */{
fprintf(outfMission,"The AUV has commenced loitering to permit ");
fprintf(outfMission,"time to complete\n");
fprintf(outfMission,"the necessary steps.\n\n");
printf("The AUV has commenced loitering to permit time to complete\n");
printf("the necessary steps.\n");

7

73

Mission. c

/*Subroutine to conduct AUV mission *

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Mission (MissionCompletePtr)

int *MissionCompletePtr;

/* Main portion of subroutine ~

mnt AUVlnTransit,TransitComplete, SearchComplete,TaskComplete;
int ReturnComplete, AUVlnSearch ,AUVInTask,AUVlnReturn;
mnt SearchTimeElapsed;

/* Initialization */
AUVlnTransit = TRUE;
AUVlnSearch = TRUE;
AUVInTask = TRUE;
AUVlnReturn = TRUE;
TransitComplete = FALSE;
SearchComplete = FALSE;
TaskComplete = FALSE;
ReturnComplete = FALSE;
SearchTimeElapsed = FALSE;

1* Call subroutine to find out if in transit *
InTransit (&AtiVlnTransit);
if (AUVlnTransit)

Transit()
IsTransitDone (&TransitComplete);

/* Call subroutine to find out if in search mode *
InSearch (&AUVlnSearch);
if (AUVlnSearch)

HasSearchTimeElapsed (&SearchTimneElapsed);
1* If the search time has not elapsed *
if (!SearchTimeElapsed)

Searcho;
IsSearchDone (&SearchComplete);

/* Call subroutine to find out if in task stage *
InTask (&AUVInTask);
if (AUVInTask)

Task 0;
/* Note: Task is done when all the targets have

74

had a package dropped on them */
IsTaskDone (&TaskComplete);}

/* Call subroutine to find out if in return stage */
InReturn (&AUVInReturn);
if (AUVInReturn){

Return (;
IsReturnDone (&ReturnComplete);

/* If the return stage is complete, the mission is complete
and the AUV can surface and wait for pick up. */

if (ReturnComplete){
Surface ();

WaitForRecovery ();
*MissionCompletePtr = TRUE;

7

75

NonCritS. c

/* Subroutine to conduct check of non-critical systems *

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

NonCriti calSysCheck (NewNonCriticalSysProbPtr)

int *NewNonCriticalSysProbPtr;

/* Main portion of subroutine *

mnt NewBuoyancyProb, NewDivingProb,NewPayloadProb, NewSonarProb;
int NewThrusterProb, NewWaterLeakProb;

/* Initialization */

NewBuoyancyProb = FALSE;
NewDivingProb = FALSE;
NewPayloadProb = FALSE;
NewSonarProb = FALSE;
NewThrusterProb = FALSE;
NewWaterLeakProb = FALSE;

/* Call subroutines to conduct system diagnostics *
BuoyancySysDiagnostics (&NewBuoyancyProb);
DivingSysDiagnostics (&NewDivingProb);
PayloadCheck (&NewPayloadProb);
SonarSysDiagnostics (&NewSonarProb);
ThrusterSysDiagnostics (&NewThrusterProb);
WaterLeakCheck (&NewWaterLeakProb);

fprintf (outfMission, "\n");
if (NewBuoyancyProb 11 NewDivingProb I NewPayloadProb

NewSonarProb 11 NewThrusterProb INewWaterLeakProb)
*NewNonCriticalSysProbPtr = TRUE;
fprintf(outfMission,,"There is a new non-critical system)
fprintf (outfmission, "problem. \n\n");
printf("'There is a new non-critical system problem.\n");

76

Obstacle.c

/* Subroutine to check for unknown obstacles */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

ObstacleCheck(FoundNewObstaclePtr)

int *FoundNewObstaclePtr;

/* Main portion of subroutine */{
int FoundObstacleAns,UnknownObstacle;

/* Initialization */
FoundObstacleAns = FALSE;
UnknownObstacle = FALSE;

/* Call subroutine to determine if there is an object in the way */
FoundObstacle (&FoundObstacleAns);

if (FoundObstacleAns){
/* Call subroutine to check if it is an unknown obstacle */
CheckIfUnknown(&UnknownObstacle);

/* If it is an unknown obstacle, it needs to be logged */
if (UnknownObstacle){

LogNewObstacleo;
*FoundNewObstaclePtr = TRUE;}

else{
fprintf(outfMission,"The obstacle has been previously ");
fprintf (outfMission, "logged.\n\n");
printf ("The obstacle has been previously logged.\n");

7

77

PayLoadC.c

/* Subroutine to conduct diagnostics of the payload
and determine if there is a new payload problem. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

PayloadCheck(NewPayloadProbPtr)

int *NewPayloadProbPtr;

/* Main portion of subroutine */

printf("Enter I if there is a new payload problem, 0 if not.");
scanf("%d",&*NewPayloadProbPtr);
fprintf(outfMission,"Payload Status %d\n" ,*NewPayloadProbPtr);

78

PowerChe. c

1* Subroutine to check if the power is OK *

include <stdio~h

extern FILE *outfMission;

PowerCheck (PowerProblemPtr)

int *PowerProblemPtr;

/* Main portion of subroutine *

printf("Enter 1 if there is a power problem, 0 if not.");
scanf ("%d" ,&*PowerProblemPtr);
fprintf (outfMission, "Power Status td\n" ,*PowerProblemPtr);

79

PropulSy.c

/* Subroutine to conduct diagnostics of the propulsion system
and verify that there are no propulsion system problems. */

#include <stdio.h>

extern FILE *outfMission;

PropulSysDiagnostics(PropulSysProblemPtr)

int *PropulSysProblemPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a propulsion problem, 0 if not.");
scanf ("I d", &*PropulSysProblemPtr);
fprintf(outfMission,"Propulsion System : Vd\n",*PropulSysProbjemPtr);

}

80

ReachdWP. c

1* Subroutine to check if the AUV has reached a waypoint *

#include <stdio .h

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

ReachedWayPoint (ReachedWayPoint.AnsPtr)

int *ReachedWayPointAnsPtr;

/* Main portion of subroutine *

printf("Enter 1 if the AflV has reached a waypoint, 0 if not.");
scanf ("Id" ,&*ReachedWayPointAnsPtr);
if (*ReachedWayPointAnsPtr)

fprintf (outfMission, "AUV has reached the next waypoint. \n\n");

else

fprintf (outfMission, 'AUV has not reached a waypoint yet. \n\n');

81

Return. c

/* Subroutine to conduct AUV return stage */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Return()

/* Main portion of subroutine */

int WayPointControlComplete;
int HaltMission; /* Dv.mry variable */
/* Initialization */

WayPointControlComplete = FALSE;

WayPointControl(&WayPointControlComplete);

if (WayPointControlComplete == FALSE)
/* Unable to complete the return.

Call subroutine to surface and wait for recovery. */
fprintf(outfMission,"Cannot complete programmed mission.\n\n");
printf("Cannot complete programmed mission.\n");

Surface 0;
WaitForRecovery 0;

/* "HaltMission" puts a break in the simulation to imply that
the mission has been terminated */

scanf ("%d", HaltMission);

82

82

RtrnDone, c

/* Subroutine to determine if AUV return stage is done */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsReturnDone (ReturnCompletePtr)

int *ReturnCompletePtr;

/* Main portion of subroutine *1{
printf("Enter 1 if the return is done, 0 if not.");
scanf ("%d", &*ReturnCompletePtr);
if (*ReturnCompletePtr){

fprintf(outfMission,"AUV has completed the return stage.\n\n");I
else{

fprintf(outfMission,"AUV has not completed the return ");
fprintf(outfMission, "stage.\n\n");

8}

83

Search.c

/* Subroutine to conduct AUV search stage */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Search()

/* Main portion of 3ubroutine */{
int SearchPatternComplete;
int HaltMission; /* Dummy variable */

/* Initialization */

SearchPatternComplete = FALSE;

DoSearchPattern(&SearchPatternComplete);

if (SearchPatternComplete == FALSE)
/* Unable to complete search.

Call subroutine to surface and wait for recovery. */
c

fprintf(outfMission,"Cannot complete programmed mission.\n\n");printf("Cannot complete programmed mission.\n");

Surface();
WaitForRecovery();

/* "HaltMission" puts a break in the simulation to imply that
the mission has been terminated */

scanf ("%d",HaltMission);

84

84

SendSPAM. c

/* Subroutine to send set points and modes */

#include <stdio.h>

extern FILE *outfMission;

SendSetPointsAndModes ()

/* Main portion of subroutine */{
fprintf(outfMission,"The AUV is sending the set points and modes");
fprintf(outfMission," to the buffer.\n\n");
printf ("The AUV is sending the set points and modes to the '1;
printf ("buffer. \n");

}

85

Sonar. c

/* Subroutine to conduct diagnostics of the sonar system
and determine if there is a new system problem. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

SonarSysDiagnostics(NewSonarProbPtr)

int *NewSonarProbPtr;

/* Main portion of subroutine */

printf("Enter 1 if there is a new sonar problem, 0 if not.");
scanf ("d" , &*NewSonarProbPtr);
fprintf(outfMission,"Sonar System %d\n",*NewSonarProbPtr);

8

86

SrchDone. c

/* Subroutine to determine if AUV search stage is done */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsSearchDone (SearchCompletePtr)

int *SearchCompletePtr;

/* Main portion of subroutine */{
printf("Enter 1 if the search is done, 0 if not.");
scanf ("Id", &*SearchCompletePtr);
if (*SearchCompletePtr){

fprintf(outfMission, "AUV has completed the search stage.\n\n");}
else{

fprintf (outfMission, "AUV has not completed the search ");
fprintf (outfMission, "stage. \n\n");

}

87

SrchPatt c

/* Subroutine to conduct waypoint control in search stage *

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

DoSearchPattern (SearchPatternCoaipletePtr)

int *SearchPatternCompletePtr;

/* Main portion of subroutine *

mnt NoCriticalSysProblem, WayPStatusComplete, FoundNewobstacle;
mnt NewNonCriticalSysProb, Target;
1* Initialization */
NoCriticalSysProblem = TRUE;
WayPStatusComplete = FALSE;
FoundNewObstacle = FALSE;
NewNonCriticalSysProb = FALSE;
Target = FALSE;

/* Check if there is a critical system problem *
CriticalSysCheck (&NoCriticalSysProblem);
/* Note: if there is a critical system problem,

SearchPatternCompletePtr remains FALSE and subroutine is done. *
if (NoCriticalSysProblem)

1* Check if there are any new obstacles that need to be avoided *
ObstacleCheck (&FoundNewObstacle);
if (FoundNewObstacle)

IsltTarget (&Target);
if (Target)

LogTarget 0;

else

LocalReplano;

/* Check if there is a non-critical system problem *
NonCriticalSysCheck (&NewNonCriticalSysProb);
if (NewNonCriticalSysProb)

GlobalReplan;

/* Conduct check of the waypoint status *
WayPointStatus 0;
SendSetPointsAndModes 0;
*SearchPatternCompletePtr = TRUE;

88

SrchT~a.c

/* Subroutine to check if the search time has elapsed *

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

HasSearchTimeElapsed (SearchTimeElapsedPtr)

int *SearchTimeEla.,psedPtr;

1* Main portion of subroutine *
printf("Enter 1 if the search time has elapsed, 0 if not.");
scanf ("%td" ,&*SearchTimeElap..3edPtr);
if (*SearchTimeElapsedPtr)

fprintf(outfMission,"The search time has elapsed, "1);
fprintf(outfMission,"the search stage is over.\n\n'1';

else

fprintf(outfMission,"The search time has not elapsed,)
fprintf (outfMission, "continuing the search. \n\n'1;

89

Steering.c

/* Subroutine to conduct diagnostics of the steering system
and verify that there are no steering system problems. */

#include <stdio.h>

extern FILE *outfMission;

SteeringSysDiagnostics(SteeringSysProblemPtr)

int *SteeringSysProblemPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a steering problem, 0 if not.");
scanf("%d",&*SteeringSysProblemPtr);
fprintf (outfMission, "Steering System : %d\n", *SteeringSysProblemPtr);

90

90

StrtGRep.c

/* Subroutine to start the global replanner. This subroutine is used
when a non-critical system has failed. */

#include <stdio.h>

extern FILE *outfMission;

StartGlobalReplanner()

/* Main portion of subroutine */
fprintf(outfMission,"The AUVhas started the global replanning.{\n\n")
printf("The AUV has started the global replanning.\n");

/* This is necessary when a non-critical system fails */

91

StrtLRep.c

/* Subroutine to start local replanner. This subroutine is used
when an obstacle must be avoided. */

#include <stdio.h>

extern FILE *outfMission;

StartLocalReplanner()

/* Main portion of subroutine */
{

fprintf(outfMission,"The AUV has started the local replanning.\n\n");printf("The AUV has started the local replanning.\n");

/* This is necessary when an obstacle needs to be avoided */
}

92

Surface.c

/* Subroutine to surface */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Surface()

/* Main portion of subroutine */
ifprintf (outfMission, "AUV is surfacing .\n\n")';

printf("AUV is surfacing.\n");}

93

TakeGPSF. c

/* Subroutine to take a GPS fix */

#include <stdio.h>

extern FILE *outfMission;

TakeGPSFix()

/* Main portion of subroutine */

fprintf(outfMission,"A GPS fix has been taken.\n\n");
printf("A GPS fix has been taken.\n");}

94

S... -. m mum .,,,,m~,., , m mm~ ml = i. mll• I I IEnd

Task.c

/* Subroutine to conduct AUV task stage */

#include ,stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Task()

/* Main portion of subroutine */{
int TaskPatternComplete;
int HaltMission; /* Dummy variable */

/* Initialization */

TaskPatternComplete = FALSE;

DoTaskPattern(&TaskPatternComplete);

if (TaskPatternComplete == FALSE)
/* Unable to complete task.

Call subroutine to surface and wait for recovery. */
{

fprintf(outfMission,"Cannot complete programmed mission.\n\n");printf("Cannot complete programmed mission.\n");

Surface();
WaitForRecovery();

/* "HaltMission" puts a break in the simulation to imply that
the mission has been terminated */

scanf("%d",HaltMission);

95

TaskDone.c

/* Subroutine to determine if AUV task stage is done t/

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsTaskDone(TaskCompletePtr)

int *TaskCompletePtr;

/* Main portion of subroutine */{
printf("Enter 1 if the task is done, 0 if not.");
scanf("%d",&*TaskCompletePtr);
if (*TaskCompletePtr)

fprintf(outfMission,"AUV has completed the task stage.\n\n");}
else{

fprintf(outfMission,"AUV has not completed the task ");
fprintf(outfMission,"stage.\n\n");

}

96

TaskPatt c

1* Subroutine to conduct vaypoint control in task stage ~

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

DoTaskPattern (TaskPatternCompletePtr)

irit *TaskPatternCompletePtr;

/* main portion of subroutine *

mnt NoCriticalSysProblen, WayPStatusComplete, FoundNewObstacle;
mnt NewNonCriticalSysProb;
mnt HomingComplete, PackageDropDone;
/* Initialization */
NoCriticalSysProblem = TRUE;
WayPStatusComplete = FALSE;
FoundNewObstacle = FALSE;
NewNonCriticalSysProb = FALSE;
HomingComplete = FALSE;
PackageDropDone = FALSE;

/* Check if there is a critical system problem *
CriticalSysCheck (&NoCriticalSysProblem);

/* Note: if there is a critical system problem,
TaskPatternCompletePtr remains FALSE and subroutine is done.

if (NoCriticalSysProblem)

/* Check if there are any new obstacles that need to be avoided ~
ObstacleCheck (&FoundNewObstacle);
if (FoundNewObstacle)

LocalReplan()

/* Home in on target *
Homingo;

1* Check if homing stage is complete *
IsHomingDone (&HomingComplete);
if (HomingComplete)

/* Conduct actual task *
DropPackage (&PackageDropDone);

if (PackageD ropDone)

TakeGPSFixo;

97

1* Check if there is a non-critical system problem ~
NonCriticalSysCheck (&NewNonCriticalSysProb);
if (NewNonCriticalSysProb)

GlobalReplano;

/* Conduct check of the waypoint status ~
WayPointStatus 0;
SendSetPoints.And~odes 0;
*TaskPatternCompletePtr TRUE;

98

Thruster.c

/* Subroutine to conduct diagnostics of the thruster system
and determine if there is a new system problem. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

ThrusterSysDiagnostics(NewThrusterProbPtr)

int *NewThrusterProbPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a new thruster problem, 0 if not.");
scanf ("%d", &*NewThrusterProbPtr);
fprintf(outfMission,"Thruster System %d\n" ,*NewThrusterProbPtr);

}

99

Time FGPS c

/* subroutine to check if it is time for "GPSfix" *

#include <stdio .h

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

CheclclfTimeForGPS (GPSFixTimePtr)

mnt *GPSFixT~mePtr;
1* Main portion of subroutine *

printf("Enter 1 if it is time for a GPS fix, 0 if not.");
scanfQ("d" ,&*GPSFix'TimePtr);
if (*GPSFixTimePtr)

fprintf(outfMission,"It is time for a GPS fix.\n");

else

fprintf(outfMission,"It is not time for a GPS fix.\n");

100

TranDone. c

/* Subroutine to determine if AUV transit stage is done */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

IsTransitDone (TransitCompletePtr)

int *TransitCompletePtr;

/* Main portion of subroutine */{
printf("Enter 1 if the transit stage is complete, 0 if not.");
scanf ("%d", &*TransitCompletePtr);
if (*TransitCompletePtr){

fprintf(outfMission,"AUV has completed the transit stage.\n\n");}
else{

fprintf(outfMission,"AUV has not completed the transit ");
fprintf(outfMission, "stage.\n\n");

1}

101

Transit. c

/* Subroutine to conduct AUV transit */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

Transit()

/* Main portion of subroutine */{
int WayPointControlComplete;
int HaltMission; /* Dummy variable */
/* Initialization */

WayPointControlComplete = FALSE;

WayPointControl(&WayPointControlComplete);

if (WayPointControlComplete == FALSE)
/* Unable to complete waypoint control.

Call subroutine to surface and wait for recovery. */
{

fprintf(outfMission,"Cannot complete programmed mission.\n\n");
printf("Cannot complete programmed mission.\n");

Surface();
WaitForRecovery();

/* "HaltMission" puts a break in the simulation to imply that
the mission has been terminated */

scanf("%d",HaltMission);

102

l l l ! ! ! !

UnKnwnOb. c

/* Subroutine to check if the AUV has encountered a new obstacle. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

CheckIfUnknown (UnknownObstaclePtr)

int *UnknownObstaclePtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is an unknown obstacle, 0 if not.");
scanf ("Id", &*UnknownObstaclePtr);
if (*UnknownObstaclePtr){

fprintf(outfMission,"There is an unknown obstacle in the ");
fprintf (outfMission, "path. \n");
printf(outfMission,"There is an unknown obstacle in the path.\n");

1

103

WaitReco.c

/* Subroutine to wait for recovery */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

WaitForRecovery()

/* Main portion of subroutine */
(

fprintf(outfMission,"AUV is waiting for recovery.\n");
printf("AU1V is waiting for recovery.\n");II

104

WaterLea.c

/* Subroutine to conduct determine if there is a new water leak. */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

WaterLeakCheck(NewWaterLeakProbPtr)

int *NewWaterLeakProbPtr;

/* Main portion of subroutine */{
printf("Enter 1 if there is a new water leak, 0 if not.");
scanf ("td",&*NewWaterLeakProbPtr);
fprintf(outfMission,"Water Leak Status :d\n",*NewWaterLeakProbPtr);

1

105

WayPCont.c

/* Subroutine to conduct waypoint control *

#include 4stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

WayPointControl (WayPointControlCompletePtr)

int *WayPointControlCompletePtr;

1* main portion of subroutine *

mnt NoCriticalSysProblem, WayPStatusComplete, FoundNewObstacle;
mnt NewNonCriticalSysProb;

/* Initialization */
NoCriticalSysProblem = TRUE;
WayPStatusComplete = FALSE;
FoundNewObstacle = FALSE;
NewNonCriticalSysProb = FALSE;

/* Check if there is a critical system problem *
CriticalSysCheck (&NoCriticalSysProblem);

1* Note: if there is a critical system problem,
WayPointControlCompletePtr remains FALSE and subroutine is done. /

if (NoCriticalSysProblem)

/* Check if there are any new ohl tacles that need to be avoided *
ObstacleCheck (&FoundNewObstacle);
if (FoundNewObstacle)

LocalReplano;

/* Check if there is a non-critical system problem *
NonCriticalSysCheck (&NewNonCriticalSysProb);
if (NewNonCriticalSysProb)

GlobalReplano;

/* Conduct check of the waypoint status *
WayPointStatusoC;
SendSetPointsAndModes 0;
*WayPointControlCompletePtr = TRUE;

106

WayPStat.c

/* Subroutine to get the status of the AUV wrt the waypoints */

#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern FILE *outfMission;

WayPointStatus()

/* Main portion of subroutine */

int ReachedWayPointAns;

/* Initialization */
ReachedWayPointAns = FALSE;

/* Subroutine to take GPS fix when necessary */
GPScheck();

/* Subroutine to determine if the AUV has reached the next waypoint */
ReachedWayPoint(&ReachedWayPointAns);
if (ReachedWayPointAns)
/* Subroutine to get the next waypoint */

GetNextWayPoint 0;

107

APPENDIX B

Example of a Normal Mission Log:

Status of the systems follows: 0 is OOC,
1 i5 OK.

AUV is in transit stage.

Power Status : 0
Propulsion System : 0
Steering System : 0
Computer System 0

There are no obstacles in the path.

Buoyancy System : 0
Diving System : 0
Payload Status : 0
Sonar System : 0
Thruster System : 0
Water Leak Status 0

It is not time for a GPS fix.

AUV has not reached a waypoint yet.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the transit stage.

AUV is in transit stage.

Power Status : 0
Propulsion System : 0
Steering System : 0
Computer System : 0

There is an obstacle in the path.

There is an unknown obstacle in the path.
The new obstacle has been logged.

The AUV has commenced loitering to permit time to complete
the necessary steps.

The AUV has started the local replanning.

Buoyancy System : 0
Diving System : 0
Payload Status : 0
Sonar System : 1
Thruster System : 0
Water Leak Status : 0

There is a new non-critical system problem.

The AUV has commenced loitering to permit time to complete

108

the necessary steps.

The AUV has started the global replanning.

It is not time for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is

proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the transit stage.

AUV is in transit stage.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There are no obstacles in the path.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is time for a GPS fix.

A GPS fix has been taken.

AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is
proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has completed the transit stage.

AUV is in the search stage.

The search time has not elapsed, continuing the search.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There is an obstacle in the path.

There is an unknown obstacle in the path.
The new obstacle has been logged.

AUV has found a target.

The target has been logged.

Buoyancy System 0

109

Diving System 0
Payload Status 1
Sonar System 0
Thruster System 0
Water Leak Status 0

There is a new non-critical system problem.

The AUV has commuenced loitering to permit time to complete
the necessary steps.

The AUV has started the global replanning.

It is not time for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is
proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the search stage.

AUV is in the search stage.

The search time has not elapsed, continuing the search.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There is an obstacle in the path.

There is an unknown obstacle in the path.
The new obstacle has been logged.

The obstacle is not a target.

The AUV has commenced loitering to permit time to complete

the necessary steps,

The AUV has started the local replanning.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is time for a GPS fix.

A GPS fix has been taken.

AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is
proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

110

AUV has completed the search stage.

AUV is in the task stage.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There are no obstacles in the path.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There is an obstacle in the path.

There is an unknown obstacle in the path.
The new obstacle has been logged.

The AUV has commenced loitering to permit time to complete
the necessary steps.

The AUV has started the local replanning.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not tame for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is

proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV is still in the homing phase.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not time for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is

proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the task stage.

AUV is in the task stage.

111

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There is an obstacle in the path.

The obstacle has been previously logged.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There is an obstacle in the path.

The obstacle has been previously logged.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is time for a GPS fix.

A GPS fix has been taken.

AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is
proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has completed the homing phase.

AUV has dropped the package.

A GPS fix has been taken.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not time for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is

proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has completed the task stage.

AUV is in the return stage.

Power Status 0

112

Propulsion System : 0
Steering System : 0
Computer System : 0

There is an obstacle in the path.

There is an unknown obstacle in the path.
The new obstacle has been logged.

The AUV has commenced loitering to permit time to complete
the necessary steps.

The AUV has started the local replanning.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not time for a GPS fix.
AUV has not reached a waypoint yet.

The AUV is sending the set points and modes to the buffer.

AUV has not completed the return stage.

AUV is in the return stage.

Power Status 0
Propulsion System 0
Steering System 0
Computer System 0

There are no obstacles in the path.

Buoyancy System 0
Diving System 0
Payload Status 0
Sonar System 0
Thruster System 0
Water Leak Status 0

It is not time for a GPS fix.
AUV has reached the next waypoint.

The AUV has been programmed for the next waypoint and is

proceeding in that direction.

The AUV is sending the set points and modes to the buffer.

AUV has completed the return stage.

AUV is surfacing.

AUV is waiting for recovery.
Mission completed successfully.

113

LIST OF REFERENCES

Bellingham, J.G.,"State Configured Layered Control",paper
presented at the International Advanced Robotics Programme,
1st Workshop on Mobile Robots for Subsea
Environments,Monterey,CA,23-26 October 1990).

Brooks,R.A.,"A Robust Layered Control System For A Mobile
Robot",IEEE Journal of Robotics and Automation,v.RA-2,pp.14-
23,1986.

Byrnes, R.B.,The Rational Behavior Model:A Multi -Paradigm, Tri -
Level Software Architecture for the Control of Autonomous
Vehicles, Ph.D.Dissertation,Naval Postgraduate School,Monterey,
CA, March 1993.

Byrnes,R.B.,et. al.,"Rational Behavior Model: An Implemented
Tri-Level Multilingual Software Architecture For Control Of
Autonomous Underwater Vehicles",paper to appear in Proceedings
of 9th International Symposium on Unmanned, Untethered
Submersible Technology, Durham, NH,1993.

Jackson, P.,Introduction To Expert Systems, 2d ed., Addison-
Wesley, 1990.

Jensen,T.W. ,Structured Programming, IEEE-0018-9162/81/0300-
0031, March 1981.

Kwak,S,H.,and McGhee,R.B.,Rational Behavior Model: A
Hierarchical Multiple Paradigm Architecture For Robot Vehicle
Control Software,Naval Postgraduate School, 1991.

Marcus,C.,Prolog Programming, Addison-Wesley, 1986.

Sterling,L,and Shapiro,E.,The Art of Prolog,The MIT Press,
1986.

Zheng,X.,Jackson, E.,and Kao,M., "Object-OrientedSoftwareArch-
itecture For Mission-Configureable Robots",paper presented at
the International Advanced Robotics Programme, Ist Workshop on
Mobile Robots for Subsea Environments,Monterey,CA,23-26
October 1990).

114

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria VA 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey CA 93943-5002

3. Dr. A.J. Healey, Code ME/HY 1
AUV Project
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93940

4. Dr. S. Kwak, Code CS/KW 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

5. Dr. R. McGhee, Code CS/MZ 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

6. NPS Naval Engineering 1
Code 34
Monterey, CA 93943-5100

7. Lt. Richard Blank 1
3116 Waterside Lane
Alexandria, VA 22309

115

